How I assemble Diamond Hot Ends

A few people have asked me how I stop leaks around heat sinks and I’ve also read quite a few posts on various forums by people who have had problems, either with leaks or blockages. I’ve never had any problem with leaks and only on rare occasions, partial blockages. The latter were in my early days of using the Diamond and were mostly caused by my turning off the printer and hence the cooling fan, before the hot end had cooled sufficiently, resulting in “heat creep”.

I’m not sure if I’ve just been lucky but I thought it might be useful if I shared my method of assembling the Diamond hot end, as it is a little different from the official “RepRap.me” method. This is a hot end that I had to re-build as it had been fitted with the original woven thermal blankets, which had basically fallen apart and needed replacing.

Having disassembled the hot end, the first thing I needed to do was clean out the bore of the heat sinks. If you are starting with new heat sinks, it shouldn’t be necessary but it might be worth just running a 4mm diameter drill bit down the holes to be sure that the ptfe Bowden tube will slide in nicely.

reamingTheHole

RepRap.me say to assemble the heat sinks into the brass cone first, then fit the Bowden tubes. The trouble with that is that you can never be quite sure that the tube has gone all the way into the heat sink and/or it requires some very careful measuring. So I like to fit the tubes first like this, leaving them just protruding.

tubeInserted

Then, using a craft knife, I trim the end flush like this. Keeping the side of the knife against the end of the heat sink ensures a clean straight cut. Make sure you use a very sharp knife as you don’t want ragged bits of ptfe inside the tube. tubeEndTrimmed

Then I pull back the tab on the Tube holder and fit Bowden clips (plenty of designs on thingiverse). This part is as per RepRap.me instructions.

tubeClip

If you know how long your Bowden tubes need to be, you can cut them to length now. If not, leave them over long. Once they are cut to the right length, I like to form a funnel inside the extruder end. To do this, I use 2.5mm drill bit and drill down a few mm while working the bit from side to side and up and down. I use Titan extruders which have filament guides built in but even so, I’ve had problems when loading filament with it getting stuck against the very end of the tube, instead of sliding straight in. Forming a “funnel shape” in the end of the tube alleviates this problem.

formingTheBowdenTube

It’s easier to do this now if you can, because you can now take an off cut of filament and feed it right through the Bowden tube from the heat sink end back towards the extruder end. This will clear out any small bits of ptfe swarf.

The next thing I do is wrap ptfe tape, (also known as thread tape) around the thread. applyingPTFE

Note how I hold the reel of tape so that it is always kept taught. Note also that it is important to wind the tape onto the thread the same way that you would screw on a nut. Then when you screw the heat sink into the threaded hole, it will have a tendency to wind the tape onto the thread and keep it in place. If you wind the tape in the other direction, the tendency is for it to unwind as you screw it into the hole.

Do the same for the other heat sinks.

heatSinksPrepared

Now I like to prepare the thermal blankets. Thankfully, RepRap.me have gone away from the awful woven stuff that simply fell apart. This is how they look now.

thermalBlanket

I’m not sure what they are made of but it’s more fibrous than woven and doesn’t seem like it’ll fray. However, it might so I like to wrap it in Kapton tape like this.

blanketWithKapton

I use 50m wide tape and start with a length of about 100mm or so, laid sticky side up. Then I place the thermal blankets on top (ensuring that all the holes line up) and fold the Kapton tape over. Then press it down around the edges so that it sticks to itself and trim around with a pair of scissors. Lastly, I pierce the tape on both sides by cutting a cross over each of the holes with a very sharp knife.

Then I fit the 3 heat sinks and the cartridge heater to the prepared thermal blanket. I use a standard 20 mm heater which actually stand proud of the hole by 5mm. That’s not ideal I know but it has never caused me any problem.

 

heatSinksAndCartridge

 

Double check to make sure there are no bits of tape or other no debris anywhere near the ends of the tubes. I don’t fit the temperature sensor at this stage. If you use thermal paste, now is the time to apply it. Personally I use this stuff but only on the heater.

copperSlip

When I was in the automotive industry many years ago, we used to call it “copper slip” and used it on spark pug threads and the like. Some little while ago, I did some back to back testing with this stuff and there was a marked improvement in heat up time due to the high copper content which improved thermal transfer. The carrier grease does burn off at high temperatures (somewhere around 350 degC IIRC) but the copper gets left behind and improves the thermal transfer. I’m a bit dubious about using the thermal paste that RepRap.me supply as I’m not sure if it is designed to withstand hot end temperatures. Maybe it’s OK – just not sure.

The next thing to do is fit the heat sinks and tighten them up. RepRap.me say not to do them too tight and allude to the fact that they will be fully tightened later. However, that later tightening doesn’t get mentioned (or it didn’t that last time I read those instructions) and in any case, once the hot end is fitted to the fan shroud, it’s almost impossible to tighten the heat sinks further. So I tighten them fully at this stage. I use a pair of pipe grips which prevent me from doing them up so tight that they would likely snap the heat sinks. All I can say is do them up tight but take care.

tightenHeatSinks

The next thing to do (which I always forget) is to fit the screws into the mount that will retain the 40mm fan. These need to have small heads to clear the top of the heat sinks, so cap head screws are a no no. There is no way to fit two of the screws once the hot end is clipped into the fan shroud. I’ve found that making the holes in the mount slightly undersized helps to keep the screws in place.

fitFanScrews

So the last ting to do is to fit it all together. I start by partly fitting the heat sinks to the mount but not fully.  This is when I fit the temperature sensor (a 4 wire pt100 in my case). Note that the RepRap.me instructions seem to indicate that the temperature sensor wires should go inside the fan shroud, along with the heater cartridge wire. I find that part of the shroud gets in the way and presses on the wire, so I prefer to run the temperature sensor wire outside the shroud but still hold it in place with the same cable that holds the heater wires to the inside of the shroud.

fitThermistor

Then, clip it all together and fit the cable ties and finally, mount the fan.fitCableTies

Do please excuse the state of the plastic mount. I printed that with the awful eSun PETG that I wrote about in an earlier post.

I like to use nylok nuts on the fan screws. If a nut fell off and went into the fan, it could fly out and do some damage to an eye or something.

Hope some of the above may be of use. As I said in my opening remarks, I’ve never really suffered with any of the problems that some people have so maybe, this assembly method may help.

eSun PETG and E3D Edge

I need to make some parts for my printer upgrade which will need to be strong so I thought it was about time that I tried some of the newer PETG filaments. As ever, these are just my personal experiences and I have no links with either eSun or E3D other than being a paying customer. Neither do I have any “axe to grind” or grudge against any company. What follows are just my own findings, on my machine and should not ne taken as any recommendation or otherwise.

I have for a long time wanted to try E3D’s Edge filament but the price has always put me off so I bought a couple of reels of eSun PETG from eBay. It cost me £51.48 for two 1kG reels, including postage and packing. This is quite a bit more than I normally pay for PLA but considerable less that E3Ds Edge. I was hopeful that the extra cost would be justified by the parts being stronger.

The reels arrived very well packed and each reel was inside a strong vacuum bag.

Before I go any further, I should remind readers that I use a Diamond hot end which has 3 inputs but a single nozzle. It is very important that all 3 inputs are loaded with filament at all times, otherwise the extruder pressure will simply force filament out of any unused inputs. However, buying 3 rolls of filament gets expensive when I only want to print a single colour, so what I do is pull off  a couple of 5 or 10 metre lengths of filament. Then I load the main reel into one input (tool 0) and load the short lengths into each of the other inputs. For single colour printing, I still use the hot end as a mixing hot end but I define the tool (in this case tool 0) to use 98% of extruder 0 and 1% of extruders 1 and 2. This ensures there is always filament loaded into all the inputs, even though only one is mainly used. The 1% mixing ensures that the filament in the other two inputs is always kept moving (albeit very slowly) so that the extruder doesn’t keep grinding away at the same pat every time it retracts, and also the filament doesn’t get cooked by being heated for a long time without moving.

So, I loaded the filament as detailed above, (having first removed the previous PLA) then I selected tool 3 which uses all three inputs in the proportions 33:33:34 and extruded a further 300mm to ensure that it was completely purged through.

The first thing I like to do with any filament is print a simple tower about 20mm square by 100mm or so high. Then I vary the temperature every 10mm or so and observe the finish and how well it prints, looking out for any signs of under extrusion at lower temperatures.

eSun recommend using a temperature of between 230 and 250 degC so I started at 235 and went up from there. The first thing I noticed was that the filament started to ooze out of the nozzle at around 170 degrees C. Anyway, this is the result starting at 235 deg C on the left and increasing to 250 just before the break on the right.

230to250

It was pretty awful as the picture shows. So I dropped the temperature down to 210 and carried on lowering the temperature down to 190 which significantly improved the finish. The next picture is the second half of the tower from 210 on the left to 190 on the right.

210to190

As well as the very poor finish, inter layer adhesion was appalling. That’s why the tower broke when I gently tried to remove it from the bed. In fact it broke in two places, the first was about 5mm up from the bed and not shown in the pictures.

So, I tried again this time starting at 180 and increasing to 210, then back to 190. This is the result.

190to210pic2

I was very surprised to find that it printed at all at 180, but I think I could hear the odd skipped step from the extruder and there were signs of under extrusion. At 200 and above, the finish deteriorated remarkably and the inter layer adhesion was still appallingly bad at all temperatures.

So it seemed that for whatever reason, the optimum temperature to print this stuff, on my machine was around 190deg C. This is nothing like the 230 to 250 that I was expecting and in fact is the same temperature that I print PLA. So I started to wonder if I had a batch that had been wrongly labelled and contacted the seller.

Meanwhile, having settle on a temperature of 190deg C, I decided to try and print something useful. This is the result

eSunPart

Sadly, although the surface finish was reasonable, there was just no strength to the part. It simply snapped very easily, far easier than I have ever experienced with cheap PLA.

At this point, the seller came back to me and asked that I supply a photograph of the labels so that he could contact the factory. Here is one of them.

Reel2

The seller later came back to say that the factories’ response was that “it is the right product” but also that it must be kept dry. I pointed out that I had removed it from it’s packaging, loaded it into my printer and started to use it within minutes so there had been no time for it to absorb moisture.

This is such a shame as I really hoped it would be a viable alternative to the more expensive “Edge” filament. The reality is that I can’t use it for anything due to the very poor inter layer adhesion and I’ll simply throw it all the bin.

In fairness to the seller, he did offer to refund my money which I accepted. I was however, a bit disappointed in the response he said that he has received from eSun. I was (and still am) willing to return it for analysis.

So, after that little episode, I still needed to find a strong filament so I “bit the bullet” and purchased some “Edge” filament from E3D online.  I opted for the 2.3 kg which worked out a bit cheaper at £70. That doesn’t sound too bad but then there was £4.26 deliver and then VAT at 20% on top of everything at £14.85 making the total £89.11 (for 2.3kg). Which works out at about £38.74 per kg. Not cheap……

When it arrived, I was a little disappointed to find that it wasn’t in the strong vacuum bags that I have become used to. It was OK and there was some silica gel in the packaging but just a tad disappointing. What was lot disappoint was the reel that it was on. Look at it……

spool

That’s it on the left, next to a “standard” 1kg reel. The inner hole is about 50mm diameter, then there are those huge webs taking it to 210mm before any filament gets wound onto it!  The outer diameter is about 300mm. A “standard” 1kg reel would fit inside the wasted space so the whole thing could have been half the size. It’s not the waste of packaging that irks me, it’s how the hell do I fit that monster on my machine? In the end, I had to wind it from the monstrous great spool onto an empty “normal” size spool. Now 1kg of 1.75mm filament is about 300 metres and believe me, winding that from one spool onto another is a real PITA. The moral of the story? Don’t buy the 2.3 kg option – pay the extra and buy 3 normal (0,75kg) size reels instead (that’s assuming they come on sensible size spools).

OK, winge over. So I loaded up as before and again, I started with tower 20mm x 20mm x 100mm varying the temperature every 10mm. I started at 235 deg C, increased it to 250 then went down to 190. Observing the print quality all the time. Here result.

235to245to195

The camera doesn’t show the differences which are very subtle. Basically, I found this stuff printed well at just about any temperature. I did notice skipped steps and signs of under extrusion from 200 and below but anything above that, it was hard to see any visible difference in this test cube piece. What I did notice is that it started to ooze at about 180 as the nozzle was heating up.

The part is really strong too. It’s only 20% infill but I can’t break it with my hands – I’d need a vice and hammer.

As this stuff is expensive (to me anyway), I decided not to bother doing any more test pieces to refine retraction or any other parameters but went straight on to print some parts using the (every day) settings I use for PLA. My rationale being that I might end up with something that would be functional but not necessarily pretty and I can refine the parameters “on the fly”. So here is the first printed part

firstPrint

Two things I noticed. The first was that it was a bit stringy and I’d need more retraction. The second was that the filament has quite an affinity for sticking to the nozzle. What tended to happen was that I’d get a  bit of a build up around the nozzle, especially when doing small detailed moves, which would later fall off and leave a stringy blob. I believe a silicone sock might help but as no one sells one to suit a Diamond hot end, I’ll have to look at making my own.

What was impressive was the hollow fan ducts (the two raised parts in the picture). I printed these without any support just for the hell of it. Here is a close up.

31mmBridge

That’s an unsupported span of 31mm from left to right. That kind of bridging capability opens up a whole new world of possibilities for me.

During the first print, I did play around with temperature and retraction settings. I found that I need about 50% more retraction than I’m used to with PLA. I have shortish Bowden tubes (about 250mm) and use firmware retraction because I need to retract all three filaments simultaneously and was using 2mm but with Edge I need about 3mm. Also, a faster retraction speed seemed to help too. An added benefit of using firmware retraction is that one can change the parameters “on the fly”. Also, I found that lowering the temperature seemed to help with the build up around the nozzle and blobs as did lowering the extrusion multiplier to 0.95 from 1.00

Anyway, this was the second print with a bit more retraction and the temperature lowered to 210 deg C. I know this is 10 degrees less that E3D recommend but it seems to work well for me on my machine.

thirdPrint

Close inspection shows it’s a bit “hairy” here and there and the top layer surface finish could be improved but the results are very promising. The holes, both horizontal and vertical are nice and circular.  The parts are also very strong, which was the original criteria that I hoped PETG would meet. I’ll keep playing around with settings to get this “dialled in” properly but so far, the results are very encouraging.

So, I’ll happily use E3D edge but only for parts that need to be robust due to the high cost. Sadly, I’ll not be using eSun PETG for anything due to the very poor inter layer adhesion that I encountered.

 

 

 

 

When all else fails, check your nozzle

All of sudden, I started having all sorts of problems with first layer adhesion. Since I’ve been using 3DLac on my glass build plate, this has never before been an issue. Try as I might, I just couldn’t get beyond the first layer which was a horrible stringy mess and refused to stick to the build plate. I won’t go into details of what I checked as it would be a long and boring read, but finally I decided to take a look at the nozzle itself. This is Diamond hot end, so it’s one great lump of brass. This is what I found.

nozzle1

That used to be a nice, round 0.4mm diameter hole. Here is another picture

nozzle2

That is a 0.8mm diameter drill bit inserted into what was once a 0.4mm diameter hole.

The nozzle has done many hundred of hours of printing but never with any abrasive filaments. Mostly just PLA. Of course, not every print has gone perfectly and there have been occasions when the nozzle has scraped across the previous layer.

I don’t really know what caused it, just general wear and tear I guess but the issues I had with printing were not a gradual process. One day all was well and the next day all was far from well.

I had a spare which I have fitted and now everything is back to normal. So I guess, if things go awry and you’ve checked all the obvious, take a look at your nozzle……….